National Hydrogen Roadmap
‘Pathways to an economically sustainable hydrogen industry’

Dr. Patrick Hartley
CSIRO Hydrogen Energy Systems Future Science Platform

Renewable Hydrogen Conference, Perth Convention Centre 31st August 2018
Why now?

Globally, the hydrogen industry is underpinned by a series of mature technologies, and relevant markets are on the verge of reaching a ‘tipping point’.

- This has meant that the hydrogen narrative has shifted from one of technology development to market activation.
Australia’s Hydrogen Production Potential

Electrochemical

- Electrolysis provides a more distributed, modular option that can scale according to demand
- Both PEM and Alkaline Electrolysis are expected to be utilised to meet Australia’s hydrogen export demand prior to 2030
- Electrolysis may be paired with dedicated renewable energy or grid connected electricity

![Wind](image1)

![Solar](image2)

Wind

Solar
Russia’s Hydrogen Production Potential

Thermochemical

- Most of the world’s ‘dirty’ hydrogen is currently produced using steam methane reforming of natural gas & coal gasification
- Australia has world class CCS potential & experience

Fossil Fuel Resources

CCS Resources
National Hydrogen Roadmap objective

Primary objective: To provide a blueprint for the development of a sustainable domestic and export hydrogen industry in Australia

Secondary Objectives:

- Bring together the broad H₂ stakeholder group (industry, government, research) to develop a clear view of the opportunity for Australia
- Inform investment decisions (industry, government and research)
Hydrogen applications

Key applications relevant to Australia

Commodities export:
- Hydrogen
- Ammonia
- Synthetic fuels (e.g. Methanol)
- Natural Gas (synthetic)

Transport:
- Passenger vehicles
- Heavy vehicles (bus, trucks)
- Shipping
- Rail (diesel and electric)

Heat:
- Residential
- Commercial heat at different temperature ranges

Industrial:
- Petrochemical
- Metals (steel, copper, nickel)
- Chemicals
- Food
- Synthetic fuels

Power/Electricity:
- Energy storage
- Grid support
 - Stability
 - Reliability
- Remote area power systems
Hydrogen value chain

Production
- Thermochemical (Fossil fuel derived)
- Electrolysis

Storage
- Compression
- Liquefaction
- Chemical

Transport
- Pipeline
- Truck
- Ship
- Rail

Utilisation
- Heat
- Stationary Electricity
- Industrial Feedstocks
- Transport

Supply

Demand

Economically sustainable industry
Understanding the Roadmap

Methodology

2. Identification of material cost drivers

1. Identification of key investment priorities
 - Commercial
 - Policy/regulatory
 - RD&D
 - Social licence

2. Modelling of best case achieved by 2030:
 - Cumulative impact of investment priorities
Hydrogen production by electrolysis

Identification of key cost drivers

Tornado Charts: Sensitivities modelled using realistic changes with time, then used to derive ‘best case’ plot

- Plant size
- Efficiency
- Capital cost
- Electricity cost

Renewable Electricity
8c to 4c per kwh

10x increase in plant size
(1MW to 10MW)

Capacity factor
Potential market applications

Target cost of hydrogen

- Price point at which hydrogen could become competitive on a commercial basis with other technologies and feedstocks (e.g. natural gas)
- It does not include the following factors, which could all improve its competitiveness:
 - Localisation of relevant supply chains
 - Industrialisation & manufacture automation
 - Establishment of export industry
 - Environmental cost/carbon pricing risk
 - Energy supply risk
- This cost curve is not the only driver – Target markets also influenced by stakeholder interest (i.e. H₂ is one of the few ways to decarbonise certain sectors), policy and existing infrastructure
Applications in this zone are viable based on H_2 cost in 2018 (Base Case) (but may have other barriers).

Applications in this zone have cost barriers in 2018, but are projected to become cost competitive ~2025.

Applications in this zone have cost (and perhaps other) barriers to overcome.
Applications & The H₂ Cost Curve

Legend
- Expected H₂ supply cost (including compression)
- Infrastructure barrier
- Base case (2018) H₂ supply cost barrier
- Best case (~2025) H₂ supply cost barrier
- Infrastructure and H₂ supply cost barrier

$/kg

- Passenger vehicles
- Buses
- Trucks
- Remote Area Power Systems
- Export
- Industrial feedstocks
- Grid firming services
- Residential heat
- Synthetic fuels

2020 2025 2030
Remote Area Power Systems (RAPS)

Legend
- Expected H₂ supply cost (including compression)
- Infrastructure barrier
- Base case (2018) H₂ supply cost barrier
- Best case (~2025) H₂ supply cost barrier
- Infrastructure and H₂ supply cost barrier

2020 2025 2030

$/kg

Passenger vehicles
Buses
Trucks
Remote Area Power Systems
Export
Industrial feedstocks
Grid firming services
Residential heat
Synthetic fuels

Expected H₂ supply cost (including compression)
Hydrogen in Remote Area Power Systems (RAPS)

Key Findings

- Potential to displace diesel at a cost of $440/MWh

- Hydrogen based RAPS system
 - Scaleable & long term storage
 - Operation in harsh conditions

- Flexible Models
 - Centralised: large scale H2 generation with H2 or electricity distribution
 - Decentralised: localised generation & consumption (prosumer models later)

- Investment Priorities
 - Technical: Hydrogen turbines for electricity generation (H2, Ammonia, H2/NG)
 - Fuel Cells: Reversible & combined electrolyser – fuel cell systems
RAPS Options
In the light of recent technological and commercial developments, market activation is the key priority for developing an economically sustainable hydrogen industry in Australia.

Barriers to market activation stem from both a lack of infrastructure supporting markets and/or the cost of hydrogen supply.

The opportunity for clean hydrogen to compete favourably on cost in many local applications is within reach and achievable by 2025.

The development of an export industry represents a potential ‘game changer’ for hydrogen and the broader energy sector due to associated increases in scale.

Development of an appropriate policy framework could create a local ‘market pull’ for hydrogen. It is expected that investment in value chain infrastructure will follow.
A Collaboration between CSIRO Energy & CSIRO Futures

CSIRO Futures

The strategic advisory arm of Australia’s national science agency. We leverage the deep expertise of CSIRO’s research professionals to help Australia’s largest companies and government ‘translate science into strategy’.

CSIRO Energy

Delivering the R&D solutions that will enhance Australia’s economic competitiveness and regional energy security while enabling the transition to a lower emissions energy future.
Project sponsors

<table>
<thead>
<tr>
<th>ATCO</th>
<th>Australian Gas Infrastructure Group</th>
<th>APGA</th>
<th>ARENA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BHP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department of Primary Industries and Regional Development</td>
<td></td>
<td>DNV·GL</td>
</tr>
<tr>
<td></td>
<td>Energy Networks Australia</td>
<td>ENGIE</td>
<td>evoenergy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HYDRICITY SYSTEMS AUSTRALIA</td>
</tr>
<tr>
<td></td>
<td>HYDROG(E)NICS</td>
<td>Kawasaki</td>
<td>KPMG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SIEMENS</td>
</tr>
<tr>
<td></td>
<td>Government of South Australia</td>
<td>STANDARDS Australia</td>
<td>Sumitomo Australia Pty Ltd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VICTORIA Economic Development, Jobs, Transport and Resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CSIRO</td>
</tr>
</tbody>
</table>
Thank you

Acknowledgements:

CSIRO Roadmap Project Team
Lead: Sam Bruce
Max Temminghoff
Jenny Hayward
Elizabeth Schmidt
Chris Munnings
Doug Palfreyman

Thanks also to representatives from the following organisations who provided input to the project:

- Air Liquide
- Australian Gas Infrastructure Group (AGIG)
- Australian Pipeline and Gas Association (APGA)
- Australian Petroleum Production and Exploration Association (APPEA)
- ATCO
- BHP
- BOC Group
- Ballard
- California Fuel Cell Partnership
- Calix
- CarbonNet
- Caterpillar
- Curtin University
- CSIRO
- Defence Science and Technology (DST)
- E4Tech
- Energy Australia
- Energy Networks
- Energy Pipelines CRC
- Engie
- EVO Energy
- Fraunhofer Society
- Fuel Cell and Hydrogen Energy Association
- GE Power
- Global CCS Institute
- Griffith University
- H2 Energy
- Horaeus
- Hydrogenics
- Hydrogenious Technologies
- Hyundai
- International Partnership for Hydrogen and Fuel Cells in the Economy
- ITM Power
- Jemena
- JPower
- Linde
- Ludwig Bölkow Systemtechnik
- Monash University
- Moreland Council
- New Energy and Industrial Technology Development Organization (NEDO)
- Renewable Hydrogen Pty Ltd
- Renewable Hydrogen Fuel Cell Collaborative
- RMIT
- Shell
- Siemens
- Southern Oil
- Thyssenkrupp
- Toyota
- TransGrid
- U.S. Department of Energy
- University of Hawaii
- University of Melbourne
- University of NSW
- University of Queensland
- Yara